This advert is not available!
The Department of Information Technology has a leading position in research and all levels of higher education. Today the department has 280 employees, including 120 academic staff and 110 full-time PhD students. The Department comprises research and education in a spectrum of areas within Computer Science, Information Technology and Scientific Computing. More than 4000 students take one or several courses offered by the Department each year.
The position is hosted by the Division of Scientific Computing within the Department of Information Technology. As one of the world’s largest focused research environments in Scientific Computing the research and education has a unique breadth, with large activities in classical scientific computing areas such as mathematical modeling, development and analysis of algorithms, scientific software development and high-performance computing. The division is currently in an expansive phase in new emerging areas such as cloud and fog computing, data science, and artificial intelligence, where it plays key roles in several new strategic initiatives at the University. The division currently hosts 20 PhD students, with more than 80 doctorates awarded. Several PhD alumni from the division are successful practitioners in the field of scientific computing and related areas, in industry as well as in academia.
The position is also part of the Science for Life Laboratory (SciLifeLab) network and offers a rich and highly interdisciplinary research environment. SciLifeLab is a leading institution and national research infrastructure with a mandate to enable cutting-edge life sciences research in Sweden, foster international collaborations, and attract and retain knowledge and talent. Our research group specializes in developing theory, methods and software for intelligent scientific experiments. We have a wide network of collaborators, and there will be opportunities to work together with excellent researchers within Sweden and abroad.
Project description: The likelihood-free parameter inference problem involves fitting the parameters of a simulation model to observed data, when the corresponding likelihood function is unavailable. We consider the specific setting consisting of stochastic simulation models, with data being observed in the form of a time series.
Available methods to solve the parameter inference problem in this setting typically involve a careful selection or sampling of parameter combinations to simulate and means to compare simulated time series to observed time series data. The two components of sampling and comparison of simulated/observed data are typically iterative in nature and may render the parameter inference process slow, particularly for large-scale problems involving a high number (>a few tens) of parameters to infer.
In recent times, machine learning has accelerated various parts of the parameter inference pipeline, e.g., the use of neural networks as summary statistics of stochastic time series, and neural density estimators as surrogate models of the simulator. The goal of this project is to develop machine learning methods to enable scalable, efficient and accurate parameter inference of stochastic simulation models (gene regulatory networks in particular). Some research questions to explore include, how do we efficiently select/sample parameters that are more likely to lead to the true parameters, how do we accurately compare high-dimensional time series of varying resolutions, and how do we efficiently estimate a posterior distribution using the sampling information while minimizing the number of simulations required.
Read more about our benefits and what it is like to work at Uppsala University
Duties:
The duties of a PhD student are primarily directed at their own research education, which lasts four years. The work may also involve, to a limited extent (ca 20%) other departmental duties, such as teaching undergraduate courses and administrative tasks – in which case the position may be extended to a maximum of five years.
Requirements:
A PhD position at the Division requires a Master of Science or equivalent in a field that is relevant to the topic of the PhD thesis, good communication skills and excellent study results, as well as sufficient proficiency in oral and written English. Additional requirements for this position include basic knowledge of, and interest in machine learning, and proficiency in programming (e.g., in Python/Julia). Extra merits with equal weights include knowledge and experience in numerical optimization, Bayesian methods and deep learning, bioinformatics and/or computational biology, and best practices in software engineering.
Application: Your application should include
It is not a strict requirement for the relevant pre-requisite degree to be completed when the application is made. All applicants should state when they would be able to fulfill all requirements and be ready to assume the position.
Rules governing PhD students are set out in the Higher Education Ordinance chapter 5, §§ 1-7 and in Uppsala University's rules and guidelines.
About the employment:
The employment is a temporary position according to the Higher Education Ordinance chapter 5 § 7. Scope of employment 100 %. Starting date as soon as possible or as agreed. Placement: Uppsala
For further information about the position, please contact: Project leader assistant professor Prashant Singh, prashant.singh@scilifelab.uu.se, head of division Gunilla Kreiss, gunilla.kreiss@it.uu.se.
Please submit your application by 30 March 2022, UFV-PA 2022/702.
Are you considering moving to Sweden to work at Uppsala University? Find out more about what it´s like to work and live in Sweden.
Type of employment | Temporary position |
---|---|
Contract type | Full time |
First day of employment | As soon as possible or as agreed |
Salary | Fixed salary |
Number of positions | 1 |
Full-time equivalent | 100 % |
City | Uppsala |
County | Uppsala län |
Country | Sweden |
Reference number | UFV-PA 2022/702 |
Union representative |
|
Published | 01.Mar.2022 |
Last application date | 30.Mar.2022 11:59 PM CEST |